
Teaching kids to code - Bridging the gap between
scientific research and practical experience.

Ramón Martín Huidobro Peltier

Supervised by Margit Pohl, Ao.Univ.Prof.Mag.Dr.

Abstract

After running an after-school activity to teach children to code by developing
games on the computer for several years, previous and ongoing research in the
field of teaching children as well as technologies to facilitate this is important.

This paper aims to compare scientific research in the above fields with the
practical experience gathered.

Introduction

Since the introduction of higher-level computing research, getting it into the
classroom has been the target of ongoing research.

7 years ago, we began an after-school activity to introduce children to program-
ming through computer game development. This has run every year on a weekly
basis since then.

When teaching children to code, a number of considerations different to those
in higher education need to be taken [Papert, 1972].

Despite having no previous pedagogical training, we have gathered insights and
adapted the activity based on the feedback and reception from the children and
parents alike.

Moving forward, it’s important to see what experts have done/are doing in order
to face the challenges of teaching children not just programming, but also logical
thinking.

In order to address this, this paper poses the following question and aims to
answer it:

How is scientific research in teaching children and teaching children to code in
particular observed through practical experience with running an after-school
activity for children?

1



Overview of Established Scientific Research

Why teach children to code?

In the context of education, it is claimed that learning to code can provide skills
that can be transferred to other areas of education, such as problem solving by
developing heuristics, breaking problems down into smaller subproblems that
can be resolved in a modular fashion, developing a foundation that helps in
learning mathematics, understanding that there are solutions to problems that
may not necessarily be best, but can be compared with others in terms of their
costs/benefits, as well as making clear expressions of solutions that can be used
in other contexts [Pea et al., 1987].

There has also been research showing that learning to interact with computers
and programming them at a young age can help develop higher-order thinking.
By learning to “debug” programs they’ve created, the former research has shown
that children “learn to learn” [Clements et al., 1993].

There have been past claims that computers hinder the social interaction be-
tween children [Cordes et al.]. However, research demonstrated that the oppo-
site of this is true. Solving problems using computers has been demonstrated to
encourage children to work with their peers and garner positive reinforcement
for this, as opposed to working on puzzles in real life [Clements et al., 2002].

Overview of Programming Teaching History

In his 1972 work on teaching children thinking, Papert ponders over introducing
computer science concepts to grade school children. In this paper, he proposes
the LOGO programming language, a set of tools to draw patterns using a set of
instruction combinations. Papert and his team at the Massachusetts Institute
of Technology (MIT) tested this and other approaches with children of around
12 years old, and found the following [Papert, 1972]:

Within three months these children could write programs to play
games… soon after that they worked on programs to generate random
sentences.

Although the research was made at the time and advocated the teaching of
programming in schools, the uptake has been slow. Brunner and Di Angelo, in
their work on teaching Information Technology (IT) in Austria, study a case of
teaching IT at the ninth-year level. This takes place after a shift in teaching
focus over to attaining competences. As defined by Weinert [Weinert, 1999]:

…the concept of competence refers to an individually or interindi-
vidually available collection of prerequisites for successful action in
meaningful task domains. In the following, the individual aspect,
which dominates the social and behavioral sciences literature, will

2



be accentuated. An important reason for this focus on the individ-
ual perspective is the fact that schools are the primary ‘educational
settings’ over the course of individual development. Each single stu-
dent must acquire necessary competencies and required education
as preparation for his or her later social and professional life.

This is also the definition used in Austria at the time of their work, and made
into a standard in the EU and Austria in 2008 and 2011, respectively [Brunner
et al.]. The aim of teaching specific competences to students is to eliminate the
challenge of the “passive role” a student plays [Brunner et al., 2014].

Cognitive Science

Investigating the intricacies of introducing children to programming concepts
requires getting into specific concepts of cognitive science, which is the study
of how intelligent entities learn, how they are introduced to new concepts and
understand them [Pritchard, 2013].

Jean Piaget, one of the leading researchers in cognitive science of the early
twentieth century, was one of the first proponents of the concept known as
constructivism. Pritchard defines this as follows:

Constructivists view learning as the result of mental construc-
tion. That is, learning takes place when new information is built
into and added onto an individual’s current structure of knowl-
edge,understanding and skills. We learn best when we actively
construct our own understanding.

In his research, Piaget proposes that a child’s learning is divided into stages
[Ackermann, 2001] that occur as the child grows, until around the age of 11,
when children can begin to think in an abstract form [Pritchard, 2013]. Before
then, learning is more focused on motor skills, empathy, as well as physical logic
[Pritchard, 2013].

Based on Piaget’s research, Ackermann infers three points:

1. Teaching is always indirect. Kids don’t just take in what’s being
said. Instead, they interpret what they hear in the light of their
own knowledge and experience. They transform the input.

2. The transmission model, or conduit metaphor, of human com-
munication won’t do. To Piaget, knowledge is not information
to be delivered at one end, and encoded, memorized, retrieved,
and applied at the other end. Instead, knowledge is experience
that is acquired through interaction with the world, people and
things.

3. A theory of learning that ignores resistances to learning misses
the point. Piaget shows that indeed kids have good reasons not

3



to abandon their views in the light of external perturbations.
Conceptual change has almost a life of its own.

Based on Piaget’s research above, it’s possible to infer that teaching children is
one thing, but children learning what one teaches them is another.

Seymour Papert, who worked with Piaget during the mid-20th century [Acker-
mann, 2001], expanded on the above concept and came up with constructionism.
In his own words [Papert et al., 1991]:

Constructionism–the N word as opposed to the V word–shares con-
structivism’s connotation of learning as “building knowledge struc-
tures” irrespective of the circumstances of the learning. It then adds
the idea that this happens especially felicitously in a context where
the learner is consciously engaged in a constructing a public entity,
whether it’s a sand castle on the beach or a theory of the universe.

In other words, constructionism adds onto constructivism by stating the impor-
tance of context in learning. This can be not only dependent on time and place,
but also on the media through which children learn.

One other difference between the two schools of thought, as related by Acker-
mann, is that children, according to Piaget, learn to detach themselves from
concrete problems and their physical manifestations, and instead gain knowl-
edge by thinking in abstract terms. Papert, on the other hand, argues that in
order to best learn, children learn best by “diving into” problems and gaining
knowledge from those concrete experiences that they can then apply to other
problems.

Papert argues that it’s important to set aside assumptions about learning with
children:

While we can “see” that children learn words, it is not quite as easy
to see that they are learning mathematics at a similar or greater
rate. But this is precisely what has been shown by Piaget’s life-long
study of the genesis of knowledge in children. One of the more sub-
tle consequences of his discoveries is the revelation that adults fail
to appreciate the extent and the nature of what children are learn-
ing, because knowledge structures we take for granted have rendered
much of that learning invisible.

Working in groups

In professional software development, arguments are made for and against work-
ing in pairs, otherwise known as pair programming. This involves two software
developers sitting at the same computer, one doing the actual programming
and the other making observations. This is often referred to as the driver and

4



navigator, respectively. In their work on the topic, Cockburn et al. present the
following advantages of pair programming:

• many mistakes get caught as they are being typed in rather
than in QA test or in the field (continuous code reviews);

• the end defect content is statistically lower (continuous code
reviews);

• the designs are better and code length shorter (ongoing brain-
storming and pair relaying);

• the team solves problems faster (pair relaying);
• the people learn significantly more, about the system and about

software development (line- of-sight learning);
• the project ends up with multiple people understanding each

piece of the system;
• the people learn to work together and talk more often together,

giving better information flow and team dynamics;
• people enjoy their work more.

Game-based learning

The relationship between programming and computer games has been actively
researched. In their work, Johnson et al. quote Thomas W. Malone as follows:

In some senses, computer programming itself is one of the best com-
puter games of all. … The “player” gets frequent performance feed-
back (that is, in fact, often tantalizingly misleading about the near-
ness of the goal). … Self-esteem is crucially involved in the game,
and there is probably the occasional emotional or fantasy aspects
involved in controlling so completely, yet often so ineffectively, the
behavior of this responsive entity. Finally the process of debugging
a program is perhaps unmatched in its ability to raise expectations
about how the program will work, only to have the expectations
surprisingly disappointed in ways that reveal the true underlying
structure of the program.

Johnson et al. talk about the positive effects on children of “Educational Games”.
Regardless of whether they have an educational or entertainment-based focus,
games been shown to have value towards learning. This is especially important,
given games are widespread in countries like the United States [Johnson et. al,
2016].

The positive effect of these games in education include [Johnson et al., 2016]:

• Cognitive development. This can be measured by the time necessary to
accomplish a task or the accuracy thereof.

• Increased motivation.

5



• Skills that can be transferred to other areas, such as communication, lead-
ership or self-efficacy.

• Improved behaviour or attitude.

Computational Thinking

At a first glance, computational thinking is, as implied by its name, thinking
like a computer. As outlined by Wing [Wing, 2006]:

Computational thinking involves solving problems, designing sys-
tems, and understanding human behavior, by drawing on the con-
cepts fundamental to computer science. Computational thinking
includes a range of mental tools that reflect the breadth of the field
of computer science.

One emphasis Wing makes is that computational thinking is “a way that hu-
mans, not computers, think”. This pushes the notion that it’s humans who
dictate the way of computing. Given that software is abstract, it’s important
not to be constrained by the current paradigms.

Given Wing’s emphasis on the importance of teaching people, not just children,
computational thinking, there have been tools developed or being developed to
help introduce children to computational thinking. One such example is Light-
Bot, a game suggested by the Code.org initiative. The purpose of the game is to
program a robot with simple commands to reach a goal. As evaluated [Gouws
et al., 2013], it helps children understand abstractions in robotic movement.

Computational thinking is helping scientists in biology, economics, and many
others expand their fields, and this will only continue to expand [Wing, 2006].

Overview of technologies used or developed by researchers

LOGO

LOGO is a project designed in the late 1960’s with teaching children to interact
with computers in mind.

By using a series of commands to start drawing, stop drawing, move forward or
backward and rotating, children can build programs to build drawings. This is
represented to the child as a turtle that moves around the screen, as described
further by Papert et al. [Papert et al., 1971]:

At any time the turtle is at a particular place and facing in a par-
ticular direction. The place and direction together are the turtle’s
geometric state.

According to them, their goal to make this approachable to children is achieved
using a carefully designed turtle language [Papert et al., 1971]:

6



For example, we can type LEFT 90 on the console keyboard and
thereby cause the turtle to rotate 90°.

This, like games, has the advantage of representing results immediately.

Scratch

Scratch is a platform developed at MIT intended for addressing the needs of
children aged 8 to 16 [Maloney et al., 2010]. Careful consideration took place
in creating the user interface for children:

• A single-window user interface. By not having the workflow split between,
for example, a text editor and the terminal, children have only one place
where the game development take place and learn not to manage tools but
first focus on the primary objective, which is logic.

• A “block”-based user interface. Instead of writing code, children drag
around and connect “blocks” of code, similar to LEGO.

• Having the code be live. By having the code be “live” the children can
click on a block of code and it will instantly run. This allows debugging
to be instantaneous.

With the goals above, Maloney et al. have a solution where they avoid error
messages as much as possible [Maloney et al., 2010]:

When people play with LEGO® bricks, they do not encounter er-
ror messages. Parts stick together only in certain ways, and it is
easier to get things right than wrong. The brick shapes suggest
what is possible, and experimentation and experience teaches what
works. Similarly, Scratch has no error messages. Syntax errors are
eliminated because, like LEGO® bricks, blocks fit together only in
ways that make sense. But Scratch also strives to eliminate run time
errors by making all blocks be failsoft. Rather than failing with an
error message, every block attempts to do something sensible even
when presented with out-of-range inputs.

Minecraft

At the time of writing, Minecraft remains one of the most popular games played
by children. Originally, Minecraft is a video game played in a virtual sand-
box, where players are incentivised to build and create their own worlds and
experiences.

As an interesting extension of the last section on LOGO, community modifica-
tions to Minecraft have allowed for programming environments to exist within
the game.

One example comes from Wilkinson et al. [Wilkinson et al., 2013], who used
ComputerCraft as a tool to run a workshop where children were introduced
to programming inside the Minecraft game, using the LUA scripting language.
Their workshop yielded the findings that children were more active and encour-

7



aged to work in an environment that not only were already familiar with, but
also enjoyed.

Robots and Internet of Things

In their research, Papert et al. [Papert et al., 1971] were already proposing
robots as a way to teach children computer programming concepts in 1971.

In recent years, robots and the Internet of Things have become ubiquitous in
teaching environments. Computers such as the Raspberry Pi have in recent
years become a staple in UK classrooms and workshops, opening the doors to
hardware programming learning.

In their investigation testing the effectiveness of “tangible” hardware program-
ming against “graphical” software-based programming, Zhu et al. concluded
that the children had more fun, had a higher interest, and felt more confident
in their coding abilities having used hardware-based interfaces. Interestingly,
at the same time, they found that the children agreed that “coding is hard” at
a higher rate when working with hardware.

Sonic Pi

Sonic Pi is a more recent and different approach to introduce children to com-
puter programming.

In their research when creating Sonic Pi, Aaron et al. used Papert’s work on
LOGO as inspiration to make a concept accessible to children. Using domain-
specific language (DSL) techniques offered by modern programming languages,
they created Sonic Pi, which is a DSL as well as a development environment for
creating music.

As inspired by the name, Sonic Pi is meant to be used on Raspberry Pi com-
puters, but is available on other platforms as well.

After having conducted a trial of the platform in a classroom, Aaron et al.
conclude that Sonic Pi is an effective way to quickly introduce children to these
concepts.

Methodology

Our practical experience took the form of an after-school activity, titled “Com-
puter Game Programming”.

Aim

The aim of Computer Game Programming is to introduce children to the basic
concepts of programming by creating games.

8



The reason games were selected as the medium for coding is because of the
straightforward nature of games, their appeal to children, as well as the instant
gratification that games offer when features are added or bugs are fixed.

Structure

As an after-school activity, Computer Game Programming is intended to be a
mixture of a club, workshop and dedicated lesson. There are two groups of
children the activity is run with. Primary students code 2D games, whereas
secondary students code 3D games. Although a majority of time is dedicated
introducing the children to concepts, they also are encouraged to play around
with what they’ve built and discover things this way.

The activity takes place once a week, as implied, after school, and for one hour.
Over the session, the group will recap on what took place the previous week
briefly in the form of asking the children to put up their hands if they know
the answer. For example, a week after learning about coordinate systems, a
few minutes would be dedicated to recapping how these worked with examples,
such as showing an asteroid displayed at different sections of the game window.
One by one, the kids would be asked to tell the group which asteroid had which
coordinates.

The activity is divided into modules over the year. Specifically, working on one
different game at the same time for each set of concepts. This has been tweaked
slightly over the years, as will be described in detail in a later section.

Technologies

This section will comprise a overview of each technology used, how these have
changed over the years, and why these were selected as a medium to teach
children the core concepts of programming:

Coding games in a text editor and running them in the terminal

This was done using the gosu games framework and writing games using the
Ruby programming language in the Atom text editor.

Advantages:

• Using this programming environment is identical to how professional soft-
ware developers work at the time of writing. By using the same tools,
the children are not only introduced to programming, but also to central
computer science concepts, such as working with Unix/Linux.

• Given that the gosu framework provides window and image drawing as
well as keyboard event catching, children need to program all their game
logic by hand. This includes physics engines (gravity), sprite drawing,
displaying windows, etc.

9



Disadvantages:

• If the purpose is to gently introduce children to programming, having
them write dozens of lines of code before they can play around with their
game configuration can be overwhelming. Some children would have to
follow along by copying what we did, never really understanding why we
were doing what we did and getting frustrated in the process.

• As a result from the last point, few concepts stuck between weeks, leading
to the need for lots of repetition.

• Having to type out code by hand, especially lots of code, can lead to
typing errors. It was tricky to truly drive home how important it is, for
example, for variable name spelling to be used consistently in a script,
leading otherwise to errors.

• Debugging Ruby errors from stack traces was often frustrating, leading to
a lack of motivation for the kids to figure out what went wrong with their
code.

• The syntax of Ruby, using the keyword end to denote the end of a block
(that is, an if statement, loop, class or method declaration, for example)
led to situations where a child might have added too many end keywords
or worse, forgotten to add some. As described above, the children were
oftentimes not motivated to read the error messages, which meant that
a lot of time was spent by the instructor trying to find this problem and
solve it.

• Platform limitation: When attempted, this programming environment
was only usable on Mac OS X, due to the implementation of Ruby on
Windows not being flexible enough, and MP3’s for music not being pos-
sible on Linux. This was not a big issue in the context of the activity
itself. However, if the children wanted to work on their games at home,
this would also require a tricky installation.

Stencyl (http://www.stencyl.com/)

Stencyl is a commercial program on Mac, Linux and Windows. It uses a drag-
and-drop code block user interface, and a graphical level / scene editor:

Advantages:

• By employing a graphics-based interface (as shown in Figure 1) instead
of writing code, onboarding the children to the basic concepts, like if
statements or loops, was a lot faster than when using the previous solution.
This also eliminates the issues brought up by typing errors, as well as end
keywords, since this is all taken care of for the children.

• Stencyl comes with a built-in game engine. This includes, but isn’t lim-
ited to, gravity, character animation, collision detection, and much more.

10



Figure 1: Stencyl block code editor

11



Removing these means that the group can focus on learning the basics
without being too limited.

• By using a graphical scene editor, children are immediately privy to how
the coordinate system works, as they can see the coordinates of characters
change when dragged around. This can be seen in Figure 2.

• Unlike the previous solution, making games with Stencyl is confined to a
single-window environment, as shown in Figure 1. Doing this avoids the
confusion of switching between the text editor and the terminal.

Figure 2: Stencyl Scene Editor

Disadvantages:

• Stencyl’s error messages can sometimes be obscure. Being built on top
of Java, when say an input is missing or invalid in one of the blocks, the
error thrown has on several occasions confused the children.

• Some features are notably missing or not as clear to children. Things such
as implementing a menu screen or credits scene need to be done directly
with Stencyl, which isn’t as immediately obvious. This disadvantage does
have the hidden benefit of encouraging the children to work with these
limitations, however.

Unity 3D

12



Unity 3D is, as implied by its name, an engine for programming and designing
3D games as well as 2D ones. It’s widely used in the independent game developer
industry. Its user interface can be seen in Figure 3.

Figure 3: Unity 3D

Advantages:

• The first advantage is immediately apparent. The children are generally
thrilled to move from a 2D game design environment to a fully 3D one.

• As with the solution of using Ruby, this is a fully professional development
environment. The key difference here, however, is that this is an integrated
development environment, or IDE, meant for game development.

• Unity allows to write the scripts used in-game in a variety of programming
languages. I decided to go for Javascript, since at the time of writing it’s
one of the more widely-used programming language.

• Unity 3D has a thriving online community, with lots of active development
going into the engine, as well as open source code, in-game assets (such as
3D character or layout models, sounds, music as well as code), and more.

• By having a scene editor similar to Stencyl’s, the children can be gently
introduced to the game development environment and learn coding at the
same time without becoming frustrated.

Disadvantages:

• Having the children be introduced to a large IDE at the same time as
learning the concepts of code can be tricky. At the beginning, they can

13



be overwhelmed and some parts can be forgotten between weeks.

• Having a resource-intensive 3D engine can make development a little slow
on older, less-powerful machines. Since the kids most of the time bring
their own laptops, this can be frustrating for them when compiling the
game can take a few minutes whilst for others it’s a matter of seconds.

• Some of the children were distracted from the programming aspect of 3D
game development and found themselves more excited about 3D modelling.
This isn’t necessarily a disadvantage, because exposing children to all as-
pects of computing is important. However, this is not the purpose of the
after-school activity.

Changes over the years

The program of the activity, that is, the order in which the concepts are intro-
duced to the children has changed, depending on both the technology used, as
well as the difficulties experienced the previous year.

Specifically, as outlined in the previous section, the use of the Ruby for coding
required building a lot of the game engine from scratch. That is, drawing
characters on screen, input recognition, physics, etc.

It was therefore decided on the first year to begin by making a “Text Adven-
ture”. Text adventures, also known as interactive fiction computer games, more
common in the 80s, are games displayed only in text, normally in a console
terminal, where commands are written to the game in plain text. A classical
example of this is Zork (https://en.wikipedia.org/wiki/Zork).

The advantage of the above is that the children would not need to concern them-
selves with complicated concepts like coordinates, graphics, animation, physics,
etc. and could use their imagination to create any adventure they want to.

The issue, however, is that this was often met by ambivalence by the children,
who wanted to see more exciting graphics. There was also a language issue, this
being a multicultural school, having children write in their own spoken language
meant that these were difficult to debug, especially given that this was their first
foray into programming in general.

To combat this, the next year was started with a pre-made engine in Stencyl.
In this example, a 2D platforming game engine was provided with some already-
made components, such as the main character, enemies, tiles, etc. programmed
and included in a few levels. The last level, however, is incomplete, encouraging
the children to finish creating the level and set them off.

The above is purposefully done to encourage the children to try things out and at
the same time have fun. They also are very gently introduced to the concepts
of programming by gently lifting the veil over how a game works by adding
components to an existing game. This is done by adding new enemies, a second

14



player for multiplayer gameplay, items to collect, displaying their score, adding
new movement behaviors for enemies, such as flying, and so on.

After this first game, the children are then to design a space-faring game from
scratch. An example on Figure 4 is using the internet character Nyan Cat.

Figure 4: Nyan Cat in Space

Since the concept of the game is simpler than that of a 2D platforming game
(that is, no (or very little) physics are needed to be coded in space!), the children
are instructed to create the basic up and down movement of the player character,
the movement of the asteroids they’re flying past, and the collision detection
of these. With these three components, the children have created a full-fledged
game in 2-3 sessions. They are then encouraged to explore how they can add
more components, such as enemies that move in a zig-zag pattern.

In one year, there was a third game made as a group, at the height of the popu-
larity of the game “Flappy Bird” (https://en.wikipedia.org/wiki/Flappy_Bird),
where the children are encouraged to re-create the game from scratch once again
and add their own twist to it. This encourages the children to write their own
physics engine, as well as come up with twists to a game they knew well at the
time. This was successful, albeit time consuming, which ate into time that was
perhaps better spent on the final game.

The final game the children produce in the year is a game of their own making.
Given the skills they’ve picked up over the year, this has been a good starting
skillset to begin making their own creation.

15



Discussion

From the start, it has been the goal of the activity to let children build their
own understanding of computer logic and how this works. This ties in with the
bases of both Piaget’s constructivism and Papert’s constructionism.

By starting from a pre-built game and working its way to encouraging the
students to build their own game from scratch allows them to pick up the
intricacies of programming in a piecemeal fashion.

Addressing the responses and needs from the children has led to changes in
how the information is delivered to them. For example, the blog posts were
introduced to allow the children who worked faster to work at their own pace,
allowing the instructors to help those who needed it.

However, constructionism argues that the context in which the children receive
the information is key.

This begs the question: Why learning to program games?

There are quite a few options for things children could learn to code. As ex-
plained above, there’s LOGO, Minecraft modding, music with Sonic Pi, and
others. Other, larger companies are also trying to address this. Apple Inc., for
example, has introduced “Swift Playgrounds”: an Integrated Development En-
vironment (IDE) built from the ground up for teaching children to code using
the iPad is wholly different from using a computer. Foregoing the computer al-
together for a tablet, puts the new aptitude in a context more familiar to them
and makes it easier to transfer the information to them, as argued by Papert.

Going back to the previous question, however, a few arguments come up as to
why games were chosen.

Instant gratification

Being able to code something up and immediately test and/or debug it is es-
sential in learning to code, as argued by Malone [Johnson et al., 2016]. This is
especially prevalent when making games. When you add a feature or fix a bug,
you can quickly see the fruit of your work. If you introduce a bug, this is also
quickly visible.

Something noteworthy about bugs, however, is that there are often amusing
results. Children are especially receptive to breaking things. This is not meant
in a negative sense, however. When creating a game where you needed to dodge
enemies to get to the goal, it’s very common for the kids to try and push the
limits of what’s possible. For example, placing 999,999 (or how many times
they feel like pressing the 9 key on the keyboard) enemies on the screen would
cause their computers to hang or even freeze. Worst still, the game would be
almost unplayable. After getting a few good laughs out of it, however, the
children would understand that not only is it key to good game design to have

16



a playable concept that isn’t unfairly difficult, but also how computers process
this.

Diverse game genres

Even though it’s unlikely that the entire group of children will be satisfied with
the game provided and/or proposed during the activity, different types that on
the one hand are extensible so that the children can use the aesthetics (that is,
graphics and sound) of their choice, but also in gameplay are proposed. This
way, different tastes can be accommodated and the majority of children are
pleased with the games they create.

However, teaching games also has its drawbacks. Most notably is that of manag-
ing expectations. Something encountered over two first year or two of teaching
kids to code games is the tricky realization that it would be a lot of work. There
have been children that stopped showing up to the activity after realizing that it
wasn’t as simple as they believed it would be. Having a pre-made example and
asset set, along with ongoing conversations about time and financial resources
has helped combat, however.

In short, having game programming be the medium through the children was
selected as the most effective, as it’s a popular medium for children and has
space for self-expression and fun during development.

With regards to the specific technology used to teach the children, Stencyl’s
similarities to Scratch are very apparent (given that Scratch is open sourced
with the GPL v2 license (https://github.com/LLK/scratch-flash) this techni-
cally isn’t an issue, but not the purpose of this research in any case). So why
not used Scratch to teach the children, especially when the school the activity
was offered already had Scratch as part of the curriculum?

Even though they’re very similar by look, Stencyl offers extensions to Scratch,
such as mobile platform support, a Java-based background, and more. This,
coupled with the already-familiar look, make the transition smooth into mak-
ing sophisticated games. This again ties in with the importance expressed by
constructionism of context.

Although there have been multiple changes to the structure of the activity, the
children retention rate has usually been consistent. The children are entitled
to drop the activity at any time during the school year, and out of a group of
twenty, there’s been an average of 3 dropouts. These are normally replaced with
new students who are brought up to speed with the rest of the group. Some
children drop out quickly when realizing that the activity would involve logical
or mathematical thinking and turned off by this. As written by Papert:

It is deeply embedded in our culture that the appreciation of math-
ematical beauty and the experience of mathematical pleasure are
accessible only to a minority, perhaps a very small minority, of the
human race.

17



This is not, however, to say that this is the only reason this happens. Some
children are not interested anymore or don’t react well to the teaching style
offered in the activity.

When it comes to helping each other out, the children tend to have a preference
to work in groups, or in pairs. This also, as noted by Fung, helped foster
their learning. It has happened in the past that for the sake of getting the
activity running as smoothly as possible that the team would solve problems
for the children so that they’re not stuck and/or frustrated and make sure that
everyone is moving forward. The major problem with this is that the children
were no longer thinking on their own and tended to just wait for an instructor
to help them and until then didn’t advance when an issue would come up.

To combat the above, we came up with the idea to have the children who were
moving along more quickly to help those struggling. This freed up time for
the instructors to help those truly struggling, and gave those with more time
something to do. A number of noteworthy things came from this:

• The struggling children were no longer waiting for instructors to come over
and help them. They would take their laptops to, or ask the kids who are
finished to come over and help them with their bugs.

• By having the children who were finished read the code of others, they were
observing the way the other children thought logically. Being exposed to
the code of others helps share perspectives and shows different ways to
solve similar problems [Skorkin, 2010]. This also leads to discussions on
how to do this, which the children often engaged in.

• By the end of the year, as previously mentioned, the children were encour-
aged to work on their own projects. One other liberty they were given
is to work in pairs or groups. After we introduced this idea to help each
other out, we found that the children on average tended to prefer working
in groups.

Conclusions and future work

When the activity was initially designed, it was unfortunately done so with
little to no research into how to teach children from a scientific point of view,
but rather an intuitive one. Doing this in a dynamic way and responding to
feedback, however, has led the team to similar, if not the same conclusions as
those presented during this research of this paper. Adapting to the needs of
the children has helped lead the team down this path and the research has also
helped to explain how to scientifically derive this.

This being said, there are a number of takeaways from having compared and con-
trasted the activity with established scientific research that can be implemented
in future variations of the activity.

For starters, it would be important to spend more time understanding the im-

18



portance of computational thinking. Last year, we had the children play the
game Light-Bot. This was due to a technical difficulty which meant we could
not start the activity as intended. However, we found that the children not only
enjoyed the game but had a much easier time understanding concepts such as
procedures.

It also would be good to place a higher priority on understanding how programs
work. We would like to spend more time in the command line, not making games
but rather making a game out of programming. For example, as described by
Papert, it would be interesting to try having the children generate sentences.

Paying more attention to the responses of children as they learn is something
we’d like to emphasize moving forward. What they pick up is equally as im-
portant as that which they don’t as easily. Furthermore, the panic that sets in
when a child struggles or becomes frustrated is something we never handled all
too well. However, as a software developer, this is a state one finds themselves
often in, and the payoff of solving a problem is big. Furthermore, this helps
them learn how to tackle future problems. As previously cited from Clements
et al., it’s important that children “learn to learn” [Clements et al., 1993].

Looking forward, Papert ponders:

The computer by itself cannot change the existing institutional as-
sumptions that separate scientist from educator, technologist from
humanist. Nor can it change assumptions about whether science for
the people is a matter of packaging and delivery or a proper area
of serious research. To do any of these things will require deliberate
action of a kind that could, in principle, have happened in the past,
before computers existed. But it did not happen. The computer has
raised the stakes both for our inaction and our action. For those
who would like to see change, the price of inaction will be to see the
least desirable features of the status quo exaggerated and even more
firmly entrenched.

Although it has not been possible to continue the after-school activity this year,
it has been possible to offer individual tutoring that follows the same structure.
It has been possible to carry through a lot of the knowledge gathered, as well as
allow the child to work together with the instructor to solve problems together
nonstop. Although the concept learning together with their peers is lost, I try
to behave as one at times.

References

Gouws, Lindsey Ann, Karen Bradshaw, and Peter Wentworth. “Computational
thinking in educational activities: an evaluation of the educational game light-
bot.” Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. ACM, 2013.

19



Johnson, Chris, et al. “Game Development for Computer Science Edu-
cation.” Proceedings of the 2016 ITiCSE Working Group Reports. ACM,
2016.

Weinert, Franz E. Concepts of competence. OFS; US Department of education,
National center for education statistics (NCES), 1999.

Papert, Seymour. “Teaching children thinking.” Programmed Learning and Ed-
ucational Technology 9.5 (1972): 245-255.

Papert, Seymour, and Idit Harel. “Situating constructionism.” Construction-
ism36.2 (1991): 1-11.

Clements, Douglas H., and Julie Sarama. “The role of technology in early
childhood learning.” Teaching Children Mathematics 8.6 (2002): 340.

Bers, Marina Umaschi, and Michael S. Horn. “Tangible Programming in Early
Childhood.” High-tech Tots: Childhood in a Digital World 49 (2010): 49-70.

Clements, Douglas H., and Bonnie K. Nastasi. “Electronic media and early
childhood education.” Handbook of research on the education of young chil-
dren (1993): 251-275.

Pea, Roy D., and Karen Sheingold. Mirrors of Minds: Patterns of Experience in
Educational Computing. Ablex Publishing Corporation, 355 Chestnut Street,
Norwood, NJ 07648, 1987.

Brunner, Markus, and Monika Di Angelo. “Competence Orientation in Voca-
tional Schools–The Case of Industrial Information Technology in Austria.” In-
ternational Conference on Informatics in Schools: Situation, Evolution, and
Perspectives. Springer International Publishing, 2014.

Papert, Seymour, and Cynthia Solomon. “Twenty things to do with a computer.”
(1971).

Gouws, Lindsey Ann, Karen Bradshaw, and Peter Wentworth. “Computational
thinking in educational activities: an evaluation of the educational game light-
bot.” Proceedings of the 18th ACM conference on Innovation and technology in
computer science education. ACM, 2013.

Ericson, Barbara, and Tom McKlin. “Effective and sustainable computing sum-
mer camps.” Proceedings of the 43rd ACM technical symposium on Computer
Science Education. ACM, 2012.

Winslow, Leon E. “Programming Pedagogy—a Psychological Overview.” ACM
SIGCSE Bulletin 28.3 (1996): 17-22.

Pritchard, Alan. Ways of learning: Learning theories and learning styles in the
classroom. Routledge, 2013.

Ackermann, Edith. “Piaget’s constructivism, Papert’s constructionism: What’s
the difference.” Future of learning group publication 5.3 (2001): 438.

20



Skorkin, Alan. “Why I Love Reading Other People’s Code And You Should
Too.” SKORKS, 19 May 2010, www.skorks.com/2010/05/why-i-love-reading-
other-peoples-code-and-you-should-too/.

Cordes, Colleen, and Edward Miller. “Fool’s Gold: A Critical Look at Comput-
ers in Childhood.” (2000).

Maloney, John, et al. “The scratch programming language and environment.”
ACM Transactions on Computing Education (TOCE) 10.4 (2010): 16.

Inc., Apple. “Swift Playgrounds.” Swift Playgrounds - Apple Developer. N.p.,
n.d. Web. 13 Mar. 2017.

Papert, Seymour. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc., 1980.

Cockburn, Alistair, and Laurie Williams. “The costs and benefits of pair pro-
gramming.” Extreme programming examined (2000): 223-247.

Fung, Dennis. “Promoting critical thinking through effective group work: A
teaching intervention for Hong Kong primary school students.” International
Journal of Educational Research 66 (2014): 45-62.

Wilkinson, Brett, Neville Williams, and Patrick Armstrong. “Improving Student
Understanding, Application and Synthesis of Computer Programming Concepts
with Minecraft.” The European Conference on Technology in the Classroom.
2013.

Aaron, Samuel, and Alan F. Blackwell. “From sonic Pi to overtone: creative
musical experiences with domain-specific and functional languages.” Proceed-
ings of the first ACM SIGPLAN workshop on Functional art, music, modeling
& design. ACM, 2013.

Zhu, Kening, et al. “How different input and output modalities support cod-
ing as a problem-solving process for children.” Proceedings of the The 15th
International Conference on Interaction Design and Children. ACM, 2016.

Wing, Jeannette M. “Computational thinking.” Communications of the ACM
49.3 (2006): 33-35.

21


	Teaching kids to code - Bridging the gap between scientific research and practical experience.
	Abstract
	Introduction
	Overview of Established Scientific Research
	Why teach children to code?
	Overview of Programming Teaching History
	Cognitive Science
	Working in groups
	Game-based learning
	Computational Thinking
	Overview of technologies used or developed by researchers

	Methodology
	Aim
	Structure
	Technologies
	Changes over the years

	Discussion
	Conclusions and future work
	References


